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The literature contains several algorithms for finding the shortest 

path between two nodes P and Q of a network, where the distances or 

arc-lengths are assumed to be positive.  (For references, consult the review 

article by Pollack and Weibenson [3] and the book by Ford and Fulkerson [1].) 

Some of the algorithms, and in particular some of the analogue devices , are 

applicable only when the distance matrix is symmetric.  As was remarked 

in [1] and [3] , this is true of the simplest of the analogue procedures 

  the "string algorithm" reported by Minty [2].  It consists of making 

an inelastic string model of the network, with knots corresponding to nodes 

and string-lengths proportional to the corresponding distances , and then 

stretching the knots P and Q as far apart as is possible without breaking 

the string; this produces at least one straight path from P to Q, and 

each such straight path corresponds to a shortest path in the network. 

Networks with asymmetric distance matrices are most conveniently 

represented by means of directed networks , in which every arc is regarded 

as a one-way street of the appropriate length.  In the present note we 

describe a simple cutting procedure (related to one suggested by Thomas 

Seidman) which can be combined with any algorithm for undirected networks 

(symmetric distance matrix) so as to form a shortest-path algorithm for 

directed networks (asymmetric distance matrix).  In particular, the cutting 

and stretching can be alternated to form a "string algorithm" for directed 

networks. 

**************** 

For each directed network N, let  N  denote the corresponding 

undirected network. 



THEOREM Suppose that P and Q are nodes of a finite directed 

network g-  which has v nodes and e arcs, and that there is a path 

from P to ft In |L. Suppose that A is an algorithm for finding 

shortest paths in undirected networks. and let the sequential procedure 

S-j , g. , S2, C_, ... be as follows : 

S.) Apply A to the undirected network N.  to find a shortest 

path it.  from P to Q in N. . Suppose it.  is given by 

V0al Vla2 V2 ' ■ Vh(i)-lah(i) Vh(i)' 

where  the arcs    a.    and the nodes    V.    are listed as they appear in 

traversing    n.     from    P = V      to    Q 'h(i)- 

C.) If n.     is also a path in N., terminate the procedure.  If n. 

is not a path in N., there exists a smallest index r(i) and a largest 

index s(i)  (possibly the same) such that the directionsof a ,.*     and 

a /.v  in tt.  are opposite to their directions in N. .  Let N. .  be 
s(i)  —  i "■ ~x    -i+l — 

the directed network that is obtained from N.  b^ deleting every arc of 

N.  that (like a ^ ...) ends in N.  at V , ... ,  but is not a •... , , and 

deleting every arc of N.  that (like a ,. ■>)  starts in N.  at V ,.%  a  iL ~x         s(i) ~i —  s(i) 

but is not a ,. ^   , .     There is a path S from P to Q in N    such 

that E is actually a shortest path from P to  Q in  N. . 
i ~i 

The procedure terminates at some stage C.  for which 

t < min (v,(e + 2)/2) , 

and the path n.     is £ shortest path from P to  Q in the directed 

network N.. 
  -i 



I 
(The same conclusion holoa if (L  requires only the first of the 

two deletions specified above. or if it requires only the second.) 

Proof. Of course the algorithm itself does not involve the actual 

construction of E, but we require the existence of E  (when  C.  does 
i i        "*i 

not specify termination) to show that the sequential procedure S, , C.. , 

gp, C-, ... can actually be followed and that each of the paths Z, E, ... 

is a shortest path from P to Q in N.. Since N,  is finite, the 

procedure must terminate at some stage  C.  and then Tt.  is a shortest 

path from P to Q in N. . 

Suppose C.  does not specify termination and let E  be a shortest 

path from P to Q in N. , given by 

*\AA ßs w2 ••• wi(i)-i 4(i) wT(i)' 
where of course W» = P and W^-, . ■. = Q.  In constructing E, we consider 

the following three possibilities: 

(i)  no W.  is equal to either V,.«.,  or V,...: 
J r(i)-l      s(i)' 

(ii)  there exists  i  such that W. = V , .s   ,  and  i <!{=>¥, A^ r ■\\ 0 3   r(x)-l      u       k   s(i) ' 

(iii) there exist  i  and k such that  j < k, W. = V ,.. .  and 
j   r(i)-l 

k   s(i)' 

When (i) holds, we define E = L ,  When (11) holds, we obtain S by 
1.1-1 i   . 

following n.  from P to V ,., _  and then following  E  from V ,.,. - *  i m(i)-l * i_1       m(i)-l 

to Q.  When (Hi) holds, we obtain S by following n.  from P to 
1 x 

V",.x , , next following  E  from V ,.» , to V,.N, and then following m(i)-l' * i_1       m(i)-l     n(i)' ^ 



n.  from V ,.*  to O i       n(x) 

the stated properties. 

remains only to show that t < min (v,(e+2)/2). 

Let us review the 

In each case, it is easily verified that Z has 

Thus the existence of t is established and it 

special properties of certain nodes and arcs of 

g.  relative to N.  itself and relative to N. for j > i. 

(a) V1,... , / Q.  If V1,... , = P, then at least one arc of N. r^i;-i rti;-l ~i 

ends at V ^.U n but no arc of N.  ends there. If V",. \ -, ^ P, r(i)-l ~j r(i)-l ^  ' 

then at least two arcs of N.  end at V 
r(i)-l 

but at most one 

arc of N.  öndsthere. 

(b) Mi) 
i 

ends at P ' or is coterminal with another arc of N. ; 

does not end at and does not appear in N. 

(c)  ot /. v ,  does not end at P or 0. and is nonexistent if r(i)-l ^,' 

a ,. s     ends  at P.  If tx ,. N  does not end at P, then a /•. v -, r(i) r(i) '      r(i)-l 

is coterminal with another arc of N.  but not with another arc 

Of Sy 

We see from  (a)   that the     t    nodes    Q, V  ,..>   ,, V   ,_.   .,   .... V  ,.   nN   , x' r(l)-l'  r(2)-l'    ' r(t-l)-l 

are pairwise distinct, and corsequently  t > v.  From (b) and (c) it follows 

that the arcs a^^, a^ , 4^^,  a^(2) Vt-1)-1' ar(t-l) are 

pairwise distinct.  If oc /. v  ends at  P, then <x / ■ \ -,     does not appear, 

but this happens for at most one value of i, and since at least one arc of 

N.  ends at Q we conclude that e > 2t - 2. 

The above reasoning completes the proof when C.  is as originally 

described, and also when C.  is replaced by CI  which requires only the 

first of the specified deletions.  Similar reasoning applied to C.", which 



Figure 1 
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